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intro

This talk is about how our coarse-grained doxastic attitudes relate to our
fine-grained doxastic attitudes, if we are rational.

By coarse-grained doxastic attitudes, I mean the triple of

• belief : the attitude we have towards things we take to be the case,
• disbelief : the attitude we have towards things we take not to be the case,
• suspension of judgment: the attitude we have towards things we neither
take to be the case, nor not to be the case.

By fine-grained doxastic attitudes, I mean credences: the various degrees of
confidence we can have in somethings’ being the case, ranging from complete
confidence to complete lack of confidence.
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intro

Two assumptions to get us off the ground:

 Whenever we have a rational doxastic attitude of one granularity towards
something, there is some rational doxastic attitude of the other
granularity towards that something;

 If we are rational, there are certain limitations on which pairs of coarse-
and fine-grained doxastic attitudes we can have towards the same thing.

Intuitively: If you have very low confidence in something’s being the case, it
seems irrational for you to believe it.

We will be concerned with a question raised by assumption :

What is the general property distinguishing rational combinations of coarse-
and fine-grained doxastic attitudes from irrational ones?
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intro

A version of a much-discussed type of response (Foley, ):

The Lockean thesis (belief version). There is some non-extremal
credence r, such that for any proposition p: one’s belief in p is rational if
and only if one’s (rational) credence in p exceeds r.

That is: Rational belief corresponds exactly to rational credence above some
threshold value between the extremes (note the wide-scope existential).

Pairing this with a similar threshold for suspension of judgment (below which
one disbelieves), we get a general story about the relation between rational
coarse-grained and rational fine-grained doxastic attitudes.
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The Lockean thesis has some well-known drawbacks:

• Given the assumption that rational credences are probabilistic, the thesis
violates principles of closure and completeness of beliefs;

• If supplemented to adjust for this, we allow for lottery- and preface
paradoxes.

I will present a separate challenge to the Lockean thesis, resulting from an
alternative view of what our fine-grained doxastic attitudes look like.



/

intro

Standardly, our fine-grained attitudes are treated as infinitesimally precise.

Your credence in a proposition p is represented as a point-value from [, ],
given by a credence function c:

 .

c(p)

According to another tradition, our fine-grained attitudes may be imprecise.

An imprecise credence in a proposition p can be represented by a subinterval
of [, ], given by a set C of credence functions:

 . .

C(p)
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intro

If rational credences can be imprecise, the Lockean thesis breaks down.

The problem: We lack an intuitive connected order on intervals: [., .] is
neither clearly greater than, lesser than, or equal to things like [., .] = ..

Assume the belief threshold is ., and you have a rational [., .] credence in p.
Then the Lockean thesis deems any coarse-grained doxastic attitude towards p
irrational, contradicting our assumption .

The question for the Lockean:

When our rational credence is imprecise, how are our rational coarse-grained
doxastic attitudes determined?
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The discussion will be framed within a particular utility-theoretic
understanding of the Lockean thesis.

By assigning utilities to coarse-grained doxastic attitudes reflecting how
accurately they represent the world, Lockean thresholds can be derived from
the assumption that these attitudes are rational iff they maximize expected
utility given one’s rational credences.

On this formulation of the Lockean thesis, the problem of accommodating
imprecision becomes a problem of finding a suitable decision rule to ground
the relation between rational fine- and coarse-grained doxastic attitudes.
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What we will do today:

• Extend a version of epistemic utility theory to include imprecise fine-
grained doxastic attitudes alongside coarse-grained ones,

• formulate some desiderata for rational decision rules within imprecise
epistemic utility theory, and

• look at how a couple of rules from practical imprecise decision theory
fare with respect to these desiderata.

What we won’t do today: Find a rule that satisfies all these desiderata. This is
work in progress! The main contribution of the talk is instead to set the stage
for further investigation both of suitable decision rules and suitable assessment
criteria.
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roadmap

• Utility-theoretic Lockeanism
• Epistemic utility theory, utility-theoretic Lockeanism

• Imprecise credences
• Motivation, imprecise epistemic utility theory.

• Desiderata for imprecise epistemic decision rules
• Basic properties, unanimity, safety, persistence

• Rules for imprecise epistemic choice
• E-admissibility, Γ-maximin, composite rules

• Conclusion
• References
• Proofs
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Utility-theoretic Lockeanism
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epistemic utility theory

Epistemic utility theory (EUT) uses methods from decision theory to study
rationality criteria for doxastic attitudes.

The term is typically associated with works aiming to establish Bayesian
rationality criteria for credences.

An EUT-approach to combinations of coarse- and fine-grained doxastic
attitudes was championed by Carl Hempel (), and revived in Easwaran
() and Dorst ()’s derivations of a Lockean thesis from a certain
version EUT.

To see how this works, we begin by outlining a basic EUT-framework
recognizing both coarse- and fine-grained doxastic attitudes.

For instance, Joyce, ; ; Greaves & Wallace, ; Leitgeb & Pettigrew, ab;
Pettigrew, .
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epistemic utility theory

EUT is motivated by a general consequentialism about epistemic rationality: a
doxastic attitude is rational insofar as adopting it is a rational means of
maximizing the epistemic value of one’s doxastic state.

Different specifications of “epistemic value” yield different versions of EUT.

According to an especially prominent version, which we will follow here,
epistemic value = accuracy: our doxastic attitudes are good to the extent that
they accurately reflect the world.

Thus, the value of a belief or high credence in a truth is higher than the value
of a disbelief or low credence in it, and vice versa for a falsehood.
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epistemic utility theory

Given a specification of epistemic value, our doxastic states can be assigned
utilities (numerical values), reflecting the epistemic value of being in that state,
given what the world is like.

Doxastic states can then be treated as decision-theoretic options which may be
more or less rational for an agent to adopt, given the utilities of her options, her
expectations about the world, and her appetite for risk.

Being in a particular doxastic state can then be seen as having adopted that
state over others, according to a more or less rational decision rule.

The rationality of a belief state, then, is ultimately determined by the
rationality of the decision rule one would use to pick that state over others.

Strictly,“would if possible”: we do not assume voluntarism, i.e. that we actually can choose
our beliefs, in such a direct manner.
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epistemic utility theory · basic framework

EUT gives us a framework for theorizing about rational choice in the context
of epistemic decision problems (e.d.p:s).

Like a practical decision problem (under uncertainty), an e.d.p. involving a
single agent a is characterized by

• a space O of options among which a is to choose,
• a space W of ways in which the world can be, and
• an agent-specific utility function Ua : O×W 7→ R.

They are distinguished from corresponding practical decision problems by
certain requirements put on the options and on the utility function.
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epistemic utility theory · basic framework

In an e.d.p., an option space is the power set of an agendaA: a set of
propositions (closed under negation, for simplicity), intuitively corresponding
to a set of propositions that are under consideration for some agent, at a time.

An option is a belief set: a set B of propositions, intuitively corresponding to a
set of propositions that an agent has the option of jointly believing, given the
ones she has under consideration.

Belief sets represent the coarse-grained doxastic attitudes of an agent. Where
B is her belief set and p a proposition on her agenda:

• If p ∈ B, we say that the agent believes p,
• if ¬p ∈ B, we say that the agent disbelieves p, and
• if p,¬p /∈ B, we say that the agent suspends judgment on p.

Propositions are given the standard treatment as sets of possible worlds; true at the worlds
they contain, and false at the others.
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epistemic utility theory · basic framework

The fine-grained doxastic attitudes of an agent a are represented by a
credence function ca : A 7→ [, ], where the size of the value ca assigns to a
proposition represent the strength of a’s confidence in the proposition.

Ultimately, we will be interested in how rational fine-grained attitudes
constrain rational coarse-grained ones. Thus, we can presuppose that
credences are rational, at least in the sense of being probabilistic.

Probabilism. Credence functions are probability functions: for any ca,
• ca(W) =  and c(∅) = ,
• ca(p ∪ q) = ca(p) + ca(q), for any disjoint p, q in the domain of ca.

We may assume that the alternatives have already been ruled out by an
accuracy-dominance argument for probabilism in the style of Joyce ().
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epistemic utility theory · basic framework

The utility function of an e.d.p. is defined using an accuracy measure.

An accuracy measure for coarse-grained doxastic states is a function that
assigns a true belief some value VT, a lack of belief some strictly lesser value
VS, and a false belief some even lesser value VT (all in R).

That is: At a way w, the accuracy of a doxastic attitude towards a proposition p
(encoded by a belief set B) is given by

v(B, p,w) =


VT if p ∈ B and p is true at w
VS if p,¬p /∈ B
VF if p ∈ B and p is false at w

where VT > VS > VF.
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epistemic utility theory · basic framework

We use accuracy measures to define the epistemic utility of a belief set B as
the sum of the accuracy of the individual coarse-grained attitudes encoded
by B, given a way w in which the world might be.

Formally, this value is given by an agent’s (a) epistemic utility function Ua:

Ua(w,B) :=
∑
p∈A

v(B, p,w)
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epistemic utility theory · basic framework

Choices between doxastic states are choices under uncertainty: we typically
lack knowledge about the objective chance of our beliefs’ being accurate.

Still, our credences encode expectations about the accuracy of our beliefs.

An expected epistemic utility function Eca outputs values encoding the
expected accuracy of a belief state, given the agent’s expectations about the
world (ca):

Eca(B) =
∑
w∈W

ca({w})Ua(w,B)

That is: we get the expected epistemic utility (accuracy) of a belief state by
calculating, for each way w, the utility of the belief state at w, weigh this by the
credence assigned to {w}, and sum the results.
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epistemic utility theory · basic framework

A constraint on rational coarse-grained attitudes can now be captured as a
version of the expected utility hypothesis:

Maximize Expected Accuracy. A belief set is rational iff it maximizes ex-
pected accuracy (epistemic utility).

From this assumption, we will be able to derive a Lockean thesis.

A point on notation. An e.d.p. is characterized by a triple (A,W,Ua).
Assuming W is fixed, we can write this more economically: from now on, Aa
is short for (A,W,Ua).
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epistemic utility theory · illustration

Adam (a) glimpses a shadow in the water, and for the first time comes to
consider whether p = There are sharks in the Baltic Sea.

Fun facts about Adam:
• his credences are probabilistic,
• his belief set maximizes expected accuracy,
• he values a true belief just as much as he disvalues false one, relative to the

value of suspending judgment.

Without loss of generality, we can define Adam’s epistemic utility function Ua
using an accuracy measure v : VT = , VS = , VF = −.
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epistemic utility theory · illustration

The problem {p,¬p}a can be represented in a decision table:

B B B
{p} {¬p} {}

w p  − 
w ¬p −  

Reading guide: B = {p},B = {¬p} and B = {} are the three belief sets
constituting Adam’s options, and w,w are ways the world would be if there
are sharks in the Baltic Sea (w) and if there are no sharks in the Baltic Sea
(w). Any other way is analogous to either w or w, so can be ignored.

For i, j ∈ {, , }: the value at (wi,Bj) is the epistemic utility Adam receives
from the belief set Bj at wi (either VT, VS or VT since {p,¬p}a is ”atomic”).
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epistemic utility theory · illustration
This graph shows how Adam’s epistemic utility (y-axis) for the three options
in {p,¬p}a varies with the credence he assigns to p (x-axis).

w : ¬p . w : p

−





ca(p)

U
a(
p)

D
B
S

If ca(p) < ., Adam will disbelieve p (D). If ca(p) > ., he will believe p (B).
If ca(p) = ., he might do either, or suspend judgment on p (S).
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epistemic utility theory · lockeanism

In this simple example, the relation between Adam’s coarse- and fine-grained
doxastic attitudes conform to the Lockean thesis.

There is some non-extremal credence r (namely, .), such that Adam’s belief in
a proposition is rational if and only if his rational credence is at or above r.

Generally: B will be rational for an agent a with agenda A iff, for all p ∈ A:

• if p ∈ B, then ca(p) ≥ −VF

VT−VF , bt

• if ¬p ∈ B, then ca(p) ≤  − −VF

VT−VF , and st

• if p,¬p /∈ B, then ( − −VF

VT−VF ) ≥ ca(p) ≤ −VF

VT−VF .
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epistemic utility theory · lockeanism

Thus by assuming Maximize Expected Accuracy, we get:

Tripartite Lockean thesis. For any proposition p on your agenda:
• belief in p is rational if and only if your credence in p is at least bt,
• disbelief in p is rational if and only if your credence in p is at most st,
• suspending judgment in p is rational if and only if your credence in p is

at least st and at most bt.

In Adam’s case, bt and dt coincide: his utility for having a true belief equals his
disutility for having a false belief. This in effect models him as risk neutral.
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epistemic utility theory · lockeanism

We can model agents with different appetites for doxastic risk by specifying the
ratio between the outputs of the accuracy measure:

• Ua is neutral iff |VT| − |VF| = |VS|.
• Example: VT = , VF = −, VS = .

• Ua is conservative iff |VT| − |VF| < |VS|.
• Example: VT = , VF = −., VS = .

• Ua is radical iff |VT| − |VF| > |VS|.
• Example: VT = ., VF = −, VS = .

Not all of these profiles are intuitively rational in themselves (especially,
radical agents may prefer believing contradictory propositions), but that’s a
separate issue. Still, I will focus on neutral and conservative agents.
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epistemic utility theory · summary

To sum up, we have seen that the following assumption yields a tripartite
Lockean thesis, generalized over risk profiles:

Maximize expected accuracy. A belief set is rational for an agent a iff it
maximizes expected accuracy (epistemic utility) according to a’s rational
credences.
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Imprecise credences
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imprecise credences ·motivation

What we have said so far will help you assess the rationality of your
coarse-grained doxastic attitudes in many everyday scenarios.

Fair coin. The Oracle shows you a coin, tells you that the coin is fair,
and tosses it. You rationally lend a . credence to the event that the coin
lands heads-up (heads). Given this, should you believe heads, disbelieve
heads, or suspend judgment on the matter?

If rational doxastic attitudes maximize expected accuracy, you are rational in
believing heads iff your bt ≥ ., rational in disbelieving iff your st ≤ ., and
rational in suspending iff bt ≤ . ≥ st.
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imprecise credences ·motivation

But what about these types of scenarios?

Mystery coin. The Oracle shows you a new coin, and tells you only that
the coin is fair or biased to some degree, in some direction. She tosses it,
while you consider the proposition that the mystery coin lands heads-up
(heads*). Should you believe heads*, disbelieve it, or suspend judgment?

Like before, this depends on the credence you lend heads∗.

Unlike before, the rational credence to lend cannot be determined by appeal to
your beliefs about objective chance.

For all you know, the objective chance of heads* may lie anywhere in between
% and %. You have no evidence favoring any one option above another.
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imprecise credences ·motivation

So: What would be a rational credence in heads*?

According to the classic Bayesian, the rational credence is a member of [, ],
weak evidence notwithstanding.

• Subjectivist reasoning: If the evidence is balanced over a set of
credences, each is equally good, and you may rationally pick whichever is
to your subjective liking.

• Objectivist reasoning: By the principle of indifference, you must have a .
credence in heads*, since you have no more evidence of heads* than
you have of ¬heads*.

Still, assigning a credence x ∈ [, ] to heads* will not capture the severity of
your uncertainty about the proposition.
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imprecise credences ·motivation

Illustration. Say that cy(heads∗) = . (but note that the argument can be
made perfectly general). Coincidentally, the exact same credence as you had in
heads.

If a rational agent (like you) assign two propositions the same credence, she
would standardly be expected to be equally willing to bet on their respective
truth.

But should you have the option to place a bet on the same amount for either
heads or heads*, it is not obviously irrational to have a preference for one
over the other.

In particular, many have the intuition that a preference for the fair coin is
rational (related: Ellsberg, ).

The classic Bayesian response cannot explain such a preference.
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imprecise credences ·motivation

An alternative line of response is to deny that your rational credence in heads*
can be identified with any particular value from [, ] (e.g., Joyce, ).

Instead, we identify this credence with a set of values from [, ]: the set of
values corresponding to all objective chances of heads* you lack reason to
exclude.

Modeling rational credences in this way distinguishes your credence in heads
(= ., or {.}) from your credence in heads* (= [, ]), on the basis of the
noted differences of your evidence between the two cases.
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imprecise credences ·motivation

The idea that rational credences can be imprecise—identified with sets of
values, rather than with single values—is explored and defended in a wide
range of works from the last century, including Keynes (), Gärdenfors &
Sahlin (), Levi (, etc.), Walley (), Joyce ().

Imprecise credences might offer a way to model how our fine-grained doxastic
attitudes reflect the weight and balance of our evidence (without invoking
things like higher-order credences).

Other motivations come from work on the incommensurability of options
(Keynes, Levi), ambiguity aversion (Ellsberg), unknown correlations (Haenni
et al., ) and suspension of graded judgment (Walley, ).
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imprecise credences · imprecise eut

If rational credences can be imprecise in this sense, the EUT we have outlined
so far cannot provide a complete story about the relation between rational
fine- and coarse-grained attitudes.

Maximize Expected Accuracy is defined for precise expected utilities,
computed from precise credences.

The simplest way of calculating expected utilities from imprecise credences
will instead yield imprecise expected utilities: intervals, which are not
generally maximizable.

In other words, the EUT we have considered handles only precise e.d.p.:s:
ones where all options all have precise expectation values.

To handle cases like Mystery coin, we need an EUT for imprecise e.d.p.:s:
ones where some options have imprecise expectation values.
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imprecise credences · imprecise eut

Following Isaac Levi (a long-time proponent of imprecise credences), we will
model imprecise credences as values given by credal sets (Levi,  etc.).

A credal set, denoted Ca for an agent a, is a closed and convex set of credence
functions, meaning that it

• has extreme points, and closure
• contain all linear averages of their members. convexity

The imprecise credence assigned to a proposition p is simply the set

Ca(p) = {c(p) | c ∈ Ca}.

Given our assumptions, any Ca(p) is a closed subinterval of [, ].
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imprecise credences · imprecise eut

By taking all the regular expected utilities calculated from the members of
some credal set, we get an imprecise expected epistemic utility.

That is: Define the imprecise expected utility of B given Ca, denoted by
IECa(B), as

IECa(B) := {Ec(B) | c ∈ Ca}.

Given our definition of credal sets, imprecise expected utilities are closed,
convex subintervals of R.

I will use IECa
(B) and IECa(B) to denote the left and right endpoint,

respectively, of an imprecise expected utility IECa(B).
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imprecise credences · summary

We now have the general components of an imprecise epistemic utility theory:
a definition of imprecise e.d.p.:s and a definition of imprecise expected utility.

To assess the rationality of an option in an imprecise e.d.p., we still need a
decision rule defined for imprecise expected utilities.

Before looking at some rules of this kind, I will suggest some desiderata:
properties that seem good for such rules to have, given that they are to be used
for specifically epistemic decision problems (precise or imprecise).
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Desiderata for imprecise
epistemic decision rules
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desiderata · choice functions

To formulate and investigate the formal properties of our candidate decision
rules, it is useful to formulate them in terms of choice functions.

A choice function f takes a decision problem Aa and outputs the subset of A
whose members satisfy some certain criteria.

We say that
• f(Aa) is the set of permitted options in Aa, according to f, and
• A − f(Aa) is the set of rejected options in Aa, according to f.

When a choice function f permits all and only the options that conform to to
some decision rule D, I will say that f characterizes D.

I use this term somewhat idiosyncratically, but innocently so.
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desiderata · choice functions

Maximize Expected Accuracy. A belief set is rational iff it maximizes ex-
pected accuracy (epistemic utility).

Maximize Expected Accuracy is characterized by the choice function max:

max(!Aa) = {B ⊆ A | ∀c ∈ Ca : ∀B′ ⊆ A : Ec(B) ≥ Ec(B′)}

max takes a precise decision problem !Aa and outputs the set of belief sets in
Aa that maximize expected accuracy according to the members of Ca.

In a precise problem these all agree, so can be represented by any single member.
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desiderata · basic properties

All rules to be considered are characterized by choice functions f that are

• Decisive. For any Aa: f(Aa) ̸= ∅.
There is always some rational belief set.

• Fixating. For any Aa: If f(Aa) is an agenda, then f(f(Aa)a) = f(Aa).
All rational belief sets are equally rational.

• Coherent. For any (!Aa): f(!Aa) = max(!Aa).
When expectation values are precise, a belief set is rational iff it maximizes
expected accuracy.

I take these to be uncontroversially desirable properties of imprecise epistemic
decision rules.
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desiderata · unanimity

All of the decision rules to be considered are also unanimous: characterized
by choice functions with the following property.

Unanimity. If Ec(B) ≥ Ec(B′) for all c ∈ Ca and B′ ⊆ A,
then B ∈ f(Aa).

That is: if an option maximizes expected accuracy according to all members of
the credal set, then it is permitted.

This guarantees that a rational belief set remains rational if one’s credence is
precisified by update of Ca, for the special case where this specific belief set is
unanimously prefereed within Ca.
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desiderata · strong unanimity

Not all rules will be strongly unanimous:

Strong unanimity. If [Ec(B) ≥ Ec(B′) for all c ∈ Ca and B′ ⊆ A], then
f(Aa) = {B | ∀c ∈ Ca : ∀B′ ⊆ A : Ec(B) ≥ Ec(B′)}.

That is: if some options maximize expected accuracy according to all members
of the credal set, only these options are permitted.

This guarantees that a rational belief set remains rational if one’s credence Ca is
precisified, for the sligthly more general case where some belief set is
unanimously preferred within Ca.

The most general version of this desideratum, of course, does not condition on unanimity.
We will return to this.
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desiderata · dominance

Rational decision rules are often required to reject dominated options.

Dominance. An option O′ is dominated by O whenever

• for any possible state of the world, O yields at least as much utility as O′

does, and
• for some possible states of the world, O yields strictly more.

Choosing a dominated option is intuitively irrational: switching to the
dominating option can only make you better off.

Fact 1. max rejects dominated options (assuming state-act independence).

Consequence: All coherent rules reject dominated options in precise problems.
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desiderata · dominance

For imprecise problems, we can look at the relation of collective dominance:

Collective dominance. In a decision problem Aa, an option O collectively
dominates an option O′ iff
• Ec(O) ≥ Ec(O′) for all c ∈ Ca, and
• Ec(O) > Ec(O′) for some c ∈ Ca.

Some of the decision rules to be considered are characterized by safe choice
functions:

Safety. No B ∈ f(Aa) is collectively dominated.

Safe choice functions may still permit options dominated bymixed options. I’m not sure
how to make sense of mixed strategies in the epistemic setting.
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desiderata · persistence

Rational coarse-grained attitudes are intuitively persistent in a certain sense.

If you rationally believe that p, it seems rational to persist in this belief, and
irrational to give it up, as long as your credence in p remains unchanged.

In particular, you should be able to consider new propositions, or cease to
consider ones, without this itself mandating a change in attitude towards p.

Note. Themotivation for this depends onhowwe conceptualize the agenda
itself: ultimately, on what sort of doxastic attitudes we take ourselves to
be modeling (occurrent? dispositional?). But least for the occurrent case,
both requirements appear intuitive.
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desiderata · persistence

A decision rule predicts this type of persistence iff it is characterized by a
choice function that is e(xpansion)-consistent and c(ontraction)-consistent.
Where Γ is some set of propositions closed under negation:

• E-consistency. f(Aa ∪ Γ) = {B ∪ B′ | B ∈ f(Aa) and B′ ∈ f(Γa)}.
• C-consistency. f(Aa − Γ) = {B − Γ | B ∈ f(Aa)}.

E-consistency ensures that expansions preserve the rational coarse-grained
attitudes towards propositions from the original agenda.

C-consistency ensures that contractions preserve any rational coarse-grained
attitudes towards propositions remaining from the original agenda.
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desiderata · persistence

A decision rule is jointly e- and c-consistent iff it is characterized by a
persistent choice function:

Persistence. B ∈ f(Aa) iff, for all agendas A ⊆ A: B ∩ A ∈ f(Aa).

A persistent choice function permits a belief set in an e.d.p. iff it permits its
solutions to all subproblems of that e.d.p..

Terminology: the B-solution to Aa is the set B ∩ A. A subproblem of Aa is
any problem Aa : A is an agenda included in A.

Note that Maximize Expected Accuracy is persistent: B ∈ max(Aa) iff
B ∩ A ∈ max(Aa) for all agendas A ⊆ A.

Proof in Appendix.
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desiderata · summary

There are many intuitively desirable properties of epistemic decision rules (see
Conclusion). But time forces us to limit attention, and we will focus on the set
of desiderata discussed so far:

• Unanimity. If a belief set maximizes expected accuracy according to all
members of the credal set, then it is permitted.

• Strong unanimity. If some belief sets maximize expected accuracy
according to all members of the credal set, then only these belief sets are
permitted.

• Safety. Collectively dominated options are rejected.
• Persistence. Expanding or contracting an agenda does not affect the

rationality of individual coarse-grained attitudes towards propositions
preserved from the previous agenda.

These are thus to be seen as potentially necessary, but definitely not sufficient,
properties of rational decision rules for imprecise epistemic choice.
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Rules for imprecise epistemic
choice
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rules

We will consider two main decision rules for imprecise choice:

• E-admissibility (Levi ),
• Γ-maximin (Gilboa & Schmeidler ),

together with some composite rules based on these.

Our goal is to assess their suitability for imprecise epistemic choice, by
checking whether they are

• unanimous,
• strongly unanimous,
• safe,
• persistent.
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rules · e-admissibility

Isaac Levi (, onwards) advocates E-admissibility as a necessary (but
perhaps not sufficient) decision rule for imprecise choice:

E-admissibility. Permitted options maximize expected utility according to
some member of your credal set.

E-admissibility is characterized by the choice function e-max:

e-max(Aa) = {B ⊆ A | ∃c ∈ Ca : ∀B′ ⊆ A : Ec(B) ≥ Ec(B′)}
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rules · e-admissibility
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Illustration. A conservative risk profile with [., .] credence in p. The
thicker, shaded lines mark the permitted solutions according to
E-admissibility, including disbelief, suspension, and belief.
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rules · e-admissibility

Good news: E-admissibility is unanimous. If all members of your credal set
agree that an option maximizes expected accuracy, this option is permitted.

Bad news: E-admissibility is not strongly unanimous. Unless all members of
your credal set agree exactly on which options maximize expected accuracy,
options that are not unanimously preferred may also be permitted.

E-admissibility is not safe. If there is disagreement among the members of
your credal set, dominated choices may be permitted.
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rules · e-admissibility
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Counterexample. A conservative risk profile with [., .] credence in p. The
thicker, shaded lines mark the permitted solutions according to
E-admissibility, including belief but also suspension, which is dominated and
not unanimously preferred.



/

rules · e-admissibility

More bad news: E-admissibility is not persistent.

If e-max permits a belief set for an e.d.p., it also permits the set’s solutions to
the subproblems of the e.d.p.:

B ∈ e-max(Aa) ⇒ B ∩ A ∈ e-max(Aa) for all agendas A ⊆ A

But the converse does not hold: A belief set may solve all subproblems of
some e.d.p., but not be permitted by e-max in the full e.d.p.:

B ∈ e-max(Aa) ̸⇐ B ∩ A ∈ e-max(Aa) for all agendas A ⊆ A

Proof in Appendix.
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rules · e-admissibility

Counterexample. Consider an e.d.p. Aa = {p,¬p, q,¬q}, where
• Ca contains only two (probabilistic) credence functions
c, c : c(p) = c(¬q) = c(q) = c(¬p) > . and their mixtures;

• Ua is conservative, with VS =  and VF = −.VT.

We then have that e-max({p,¬p}a) = {{p}, {¬p}, {}}: each option
maximizes for the linear average of c and c, which assigns all propositions a
. credence. For analogous reasons, e-max({q,¬q}a) = {{q}, {¬q}, {}}.

Then B = {p, q} solves both subproblems of Aa, by {p} and {q}. Yet
B /∈ e-max(Aa): for all c ∈ Ca, Ec(B) will be a negative value, while Ec({}) is
always .
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rules · e-admissibility

In other words, E-admissibility is not e-consistent: by expanding the agenda,
rational agents (even when conservative) can be forced to change their
attitude towards propositions from the original agenda.

In sum:

e-admissibility
unanimity 3
strong unanimity 7
safety 7
e-consistency 7
c-consistency 3

Before discussing the possibility of supplementing or strengthening
E-admissibility, we investigate another candidate rule.
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rules · Γ-maximin

Γ-maximin (e.g., Gilboa & Schmeidler, ) is a simple maximin-rule for
imprecise decision making:

Γ-maximin. Permitted options maximize the lowest expected utility as-
signed by any member of your credal set.

Γ-maximin is characterized by the choice function maximin:

maximin(Aa) = {B ⊆ A | ∀B′ ⊆ A : IECa
(B) ≥ IECa

(B′)}
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rules · Γ-maximin
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Illustration. A conservative risk profile with [., .] credence in p. The
thicker, shaded lines mark the permitted solutions according to Γ-maximin,
which only includes suspension.
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rules · Γ-maximin

Good news: Γ-maximin is unanimous: If the members of your credal set agree
on which belief sets maximize expected accuracy, these sets will be permitted
by maximin.

Bad news: Γ-maximin is not strongly unanimous: Unless the members of
your credal set agree exactly on which options maximize expected accuracy,
options that are not unanimously preferred may be permitted.

Γ-maximin is not safe: If there is disagreement among the members of your
credal set, dominated choices may be permitted.

Proof in Appendix.
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rules · Γ-maximin
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Counterexample. (Same as for E-admissibility.) A conservative risk profile
with [., .] credence in p. The thicker, shaded lines marks the permitted
solutions according to Γ-maximin, including belief but also suspension, which
is dominated and not unanimously preferred.
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rules · Γ-maximin

More bad news: Γ-maximin is not persistent.

If maximin permits the B-solutions to all subproblems of an e.d.p. Aa, it also
permits B in Aa:

B ∈ maximin(Aa) ⇐ B ∩ A ∈ maximin(Aa) for all agendas A ⊆ A

But the converse does not hold: maximin may permit a belief set B in an
e.d.p. Aa, without permitting the B-solutions to the subproblems of Aa.

B ∈ maximin(Aa) ̸⇒ B ∩ A ∈ maximin(Aa) for all agendas A ⊆ A

Proof in Appendix.
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rules · Γ-maximin

Counterexample. Consider an e.d.p. Aa = {p,¬p, q,¬q}, where
• Ca contains two (probabilistic) credence functions
c, c : c(p) = c(¬q) = c(q) = c(¬p) > ., their mixtures, and
nothing more;

• Ua is neutral, with VS = .

For the full e.d.p., we get that maximin(Aa) = {{p, q}, {¬p,¬q}, {}}: these
are the only options with a non-negative lowest IE (namely ).

But maximin({p,¬p}a) = {{}} (and analogously for {q,¬q}a): IECa
({p})

must be the negative value given by Ec({p}), and IECa
({¬p}) the negative

value given by Ec({¬p}). But IECa
({}) = , since VS = .

Thus e.g., B = {p, q} ∈ maximin(Aa), yet B solves no subproblems of Aa.
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rules · Γ-maximin

In other words, Γ-maximin is not c-consistent: by contracting the agenda,
rational agents can be forced to change their attitude towards propositions
remaining from the original agenda.

In sum:

e-admissibility Γ-maximin
unanimity 3 3
strong unanimity 7 7
safety 7 7
e-consistency 7 3
c-consistency 3 7
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rules · composite rules

If we agree that the rational agent avoids dominated choices, we can do one
better by explicitly constraining rules to reject dominated choices:

E-admissibility∗. Permissible choicesmaximize expected utility according
to some member of your credal set, and are safe.

The characterizing choice function is e-max∗ := e-max ◦ non-dom, where
non-dom is the choice function that permits all and only safe options:

non-dom(Aa) = {B | ¬∃B′ ⊆ A : [∀c ∈ Ca : Ec(B′) ≥ Ec(B)] & 
[∃c ∈ Ca : Ec(B′) > Ec(B)]}
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rules · composite rules

E-admissibility∗ is also strongly unanimous: If the members of your credal set
agree that some option maximizes expected accuracy, this option is permitted,
and only such options are permitted: the others are collectively dominated.

For the same reason, the choice function maximin∗ := maximin ◦ non-dom
is not only safe but also strongly unanimous.

Still, neither composite rule is persistent: e∗-max fails e-consistency (consider
the counterexample used for e-max), and maximin∗ fails c-consistency
(consider the counterexample used for maximin).



/

rules · composite rules

One might hope that composing E-admissibility (which is only c-consistent)
with Γ-maximin (only e-consistent) would yield a separable decision rule.

E-maximin. Permitted options maximize expected utility according to
some member of your credal set, andmaximize the lowest expected utility
assigned by any member of your credal set.

The corresponding choice function is e-maximin := e-maximin ◦ maximin.

Unfortunately, E-maximin is not c-consistent.
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rules · composite rules

Counterexample. Consider an e.d.p. Aa = {p,¬p, q,¬q}, where
• Ca contains two (probabilistic) credence functions
c, c : c(p) = c(¬q) = c(q) = c(¬p) > ., their mixtures, and
nothing more;

• Ua is neutral, with VS = .

For the full e.d.p., we get that e-maximin(Aa) = {{p, q}, {¬p,¬q}, {}}: these
are the only options with a non-negative lowest IE (namely ), and they each
maximize for the linear average of c, c, cx, which assigns both p and q a .
credence.

But e-maximin({p,¬p}a) = {{}} (and analogously for {q,¬q}a): IECa
({})

must be the negative value given by Ec({p}), and IECa
({¬p}) the negative

value given by Ec({¬p}). But IECa
({}) = , since VS = . Again, {}

maximizes relative to cx.

Thus B = {p, q} ∈ e-maximin(Aa), yet B solves no subproblems of Aa.
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rules

e-admissbility∗/
e-admissibility Γ-maximin Γ-maximin∗ e-maximin

unanimity 3 3 3 3
strong unanimity 7 7 3 7
safety 7 7 3 7
e-consistency 7 3 7/3 3
c-consistency 3 7 3/7 7

In sum: Neither of these rules satisfy all of the suggested desiderata.

While each can be strengthened to guarantee strong unanimity and safety,
persistence—specifically, c-consistency—is not as easily achieved.
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Conclusion
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conclusion

This talk introduced a basic formal framework for approaching the problem of
establishing a Lockean thesis for imprecise credences: imprecise EUT.

With this in place, we considered a small selection of decision rules that might
be used for determining the rationality of coarse-grained doxastic attitudes,
without requiring that fine-grained doxastic attitudes be precise.

We suggested some basic desiderata for such rules, and found that neither rule
considered had all the properties we were looking for.
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conclusion · a note on further decision rules

Beside the rules discussed today, I have looked (in varying level of detail) on

• additional rules from practical imprecise decision theory, s.a. Walley
’s Maximality,

• social choice rules on aggregating the preferences of the members of the
credal set, s.a. classic Majority voting (ordinal) and Utilitarianism
(cardinal).

Some issues: Maximality fails persistence (it is not e-consistent!)

Aggregation is not useful for imprecise choice generally, but hold more
promise for the special case of credal sets in e.d.p.s, which yield Arrow
consistent preference domains (given our assumptions).

Still, the social choice rules (i) require aggregation over infinite domains, and
(ii) struggle with intuitive desiderata pertaining to credal update.



/

conclusion · a note on further desiderata

Persistence constrains how the coarse-grained attitudes of a rational agent
change along with changes of her agenda, all else remaining fixed.

But there are also plausible constraints on how these attitudes change along
with changes of an agent’s fine-grained attitudes: i.e., when the agent learns
things, updating her credal set.

(Strong) unanimity provides a weak constraint on coarse-grained attitude
change in response to precisification of your credence in some proposition
(weak because conditioned on agreement).

Our imprecise credences can also
• shift: be updated to include some new values and exclude some of the old,
• dilate: be updated to include new values and preserve the old.
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conclusion

Spelling out additional desiderata + testing additional rules against them are
part of the work in progress. Input on any level is highly appreciated!

Regarding both philosophical/conceptual and formal parts of the project:

• Is there anything particular about the work presented so far that does not
make sense to you?

• Is there anything particular that you think would make sense to develop
in more detail, or generally put more emphasis on?

• Is there anything additional that you think would make sense to include
discussion of, make use of, or at least look up?

Thank you!
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proof · persistence of max

Let Aa be an arbitrary precise e.d.p.. We want to show that:
B ∈ max(Aa)⇔ [for all A± ⊂ A, B ∩ A± ∈ max(A±

a )].

Assume that B ∈ max(Aa). Where c ∈ Ca, this is equivalent to

for all B′ ⊆ A : Ec(B) ≥ Ec(B′)

which the linearity of E lets us rewrite as

for all B′ ⊆ A :
∑

A±⊂A

Ec(B ∩ A±) ≥
∑

A±⊂A

Ec(B′ ∩ A±).

This can clearly hold if, and only if,

for all A± ⊂ A : for all B′ ⊆ A : Ec(B ∩ A±) ≥ Ec(B′ ∩ A±),

which, by definition of max, says that B ∩ A± ∈ max(A±
a ) for all A± ⊂ A. □

I use the superscript± to indicate that a set is non-empty and closed under negation.
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proof · c-consistency of e-max
Let Aa be an arbitrary e.d.p.. We want to show that:
B ∈ e-max(Aa)⇒ [for all A± ⊂ A, B ∩ A± ∈ e-max(A±

a )].

Assume that B ∈ e-max(Aa), or equivalently, that

for some c ∈ Ca: for all B′ ⊆ A: Ec(B) ≥ Ec(B′).

By the linearity of E, we can rewrite this as

for some c ∈ Ca: for all B′ ⊆ A:
∑

A±⊆A

Ec(B ∩ A±) ≥
∑

A±⊆A

Ec(B′ ∩ A±).

which can hold if, and only if,

for some c ∈ Ca: for all B′ ⊆ A: for all A± ⊆ A: Ec(B ∩ A±) ≥ Ec(B′ ∩ A±).

Rearranging the quantifiers yields the implied claim

for all A± ⊆ A: for some c ∈ Ca: for all B′ ⊆ A : Ec(B ∩ A±) ≥ Ec(B′ ∩ A±).

This says that A± ⊆ A, there is some c ∈ Ca such that for all B′ ⊆ A±,
Ec(B) ≥ Ec(B′)—by definition, that B ∈ e-max(A±) for all A± ⊂ A. □
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proof · unanimity of maximin

Let Aa be an arbitrary molecular e.d.p. such that some B ⊆ A maximizes
expected utility given any c ∈ Ca. We want to show that B ∈ maximin(Aa), or
equivalently, that IECa

(B) ≥ IECa
(B′) for all B′ ⊆ A.

Consider c ∈ Ca : Ec(B) = IECa
(B). By assumption, B is E-maximal for any

member of Ca. In particular, Ec(B) ≥ Ec(B′), for any B′ ⊆ A. By definition of
imprecise expected utility, this means that Ec(B) ≥ IECa

(B′), or equivalently,
that IEc(B) ≥ IECa

(B′) for any B′ ⊆ A. □
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proof · e-consistency of maximin
Let Aa be an arbitrary e.d.p.. We want to show that:
[For all A± ⊂ A,B ∩ A± ∈ maximin(Aa)] ⇒B ∈ maximin(Aa).

Assume that, for all A± ⊂ A, B ∩ A± ∈ maximin(A±
a ). That is:

for all A± ⊂ A and all B′ ⊆ A : IECa
(B ∩ A±) ≥ IECa

(B′ ∩ A±).

Consider A± ⊂ A : A− A± = {φ,¬φ} for some proposition φ. By
assumption, IECa

(B ∩ A±) ≥ IECa
(B′ ∩ A±) and IECa

(B ∩ {φ,¬φ}) ≥
IECa

(B′ ∩ {φ,¬φ}). We must thus have that

IECa
(B ∩ A±) + IECa

(B ∩ {φ,¬φ}) ≥ IECa
(B′ ∩ A±) + IECa

(B′ ∩ {φ,¬φ}),

which by definition of IE can be rewritten as

IECa
((B ∩ (A± ∪ {φ,¬φ})) ≥ IECa

(B′ ∩ (A± ∪ {φ,¬φ})).

By definition of A± and B,B′, we may rewrite this as IECa
(B) ≥ IECa

(B′),
which is equivalent to B ∈ maximin(Aa), since B′ was arbitrary. □
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